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ABSTRACT: For the flexural reinforcement of bridge and
building structure, synthetic materials whose dynamic prop-
erties are superior and those containing the merit of corro-
sion-proof are widely used as the substitute for a steel plate.
Since FRP plate has improved bond strength owing to the
fibers externally adhering to the plate, many researches re-
garding the bond strength improvement have been substan-
tially performed. To search out such bond strength improve-
ment, previous researchers had ever examined the bond
strength of FRP plate through their experiment by setting up
many variables. However, since the experiment for a re-
search on the bond strength takes much of expenditure for
setting up the equipment and is time-consuming, also is
difficult to be carried out, it is limitedly conducted. The
purpose of this study was to develop the most suitable
artificial neural network model by application of various
neural network models and algorithm to the data of the

bond strength experiment conducted by previous research-
ers. Many variables were used as input layers against bond
strength: depth, width, modulus of elasticity, tensile
strength of FRP plate and the compressive strength, tensile
strength, and width of concrete. The developed artificial
neural network model has been applied back-propagation,
and its error was learned to be converged within the range
of 0.001. Besides, the process for the over-fitting problem has
been dissolved by Bayesian technique. The verification on
the developed model was executed by comparison with the
test results of bond strength made by other previous re-
searchers, which was never been utilized to the learning as
yet. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 5119–5127,
2006
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INTRODUCTION

For the flexural reinforcement of bridge and building
structure, synthetic materials whose dynamic proper-
ties (turning point intensity, turning point strength)
are superior and those containing the merit of corro-
sion-proof are widely used as the substitute for steel
plate.

Fiber reinforced plastic (FRP), as the most represen-
tative material among the synthetic materials, has
strong intensity and higher elasticity modulus. Since
its lightweight property, corrosion-proof characteris-
tic, nonelectric and nonelectronic property, durability
are all predominant, and hence they are increasingly
used in shipbuilding, space, automobile, and leisure
industry, and it is expected to play an important func-
tion in the future construction industry. Particularly,
the bonding technique in engineering using high in-
tensive FRP sheet or plate is quite securing the safety
and engineering character owing to those merits that
are able to fairly exclude the defect of technical bond-

ing method of steel plate. Therefore, FRP sheet or plate
not only structurally improves the load carrying ca-
pacity of the side-material but also improves the du-
rability of concrete side-material by diminishing its
size of the deflection and crack at a service load con-
dition, and as it is effective for promotion of bond
strength as the stiffened plate attached on the exterior,
many researches have been ever conducted.

To search out such bond strength improvement,
previous researchers had ever examined the bond
strength of FRP plate through their experiment by
setting up many variables. However, since the exper-
iment for a research on the bond strength is taken
much of expenditure for setting up the equipment and
is time-consuming, also is difficult to be carried out, it
is limitedly conducted.

In this study, the optimal artificial neural network
model has been developed by an application of the
diversified neural network model and algorithm to the
data of the bond strength experiment conducted by
previous researchers. When the learning has been
practiced, many variables were used as input layers
against bond strength: depth, width, modulus of elas-
ticity, tensile strength of FRP plate and the compres-
sive strength, tensile strength, and width of concrete.
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The developed artificial neural network model has
been applied back-propagation, and its error was
learned to be converged within the range of 0.001.
Besides, the process for generalization has been dis-
solved about the problem of over-fitting in the way of
more generalized method by introduction of Bayesian
technique.

The verification on the developed model was exe-
cuted by comparison with the test results of bond
strength made by other previous researchers, which
was never been utilized to the learning as yet.

GENERAL

Thermoplastic polyester

Terephthalic acid (TPA) polyethylene is a chain-
shaped polyester and is a thermoplastic resin. Because
its tensile strength is high and its wearing resistance is
superior, it is used for films and in textiles. The mate-
rial added glass fiber to the resin is used as thermo-
plastic molding material. The adding of glass fiber is
to use the long fiber of 30–50% at its weight percent-
age. Glass Fiber is structured as multiarrayed to the
lengthy direction of cylinder-shaped pellet.

Manufacturing method

TPA polyethylene can be made by condensation with
TPA dimethyl and ethylene glycol for polymerization
as shown in Figure 1. After melting the manufactured

resin, a pellet-shaped plastic material can be made by
addition of glass fiber and stain.

Structure and property of molecule

As the resin contains the polarity molecule, it is apt to
be crystallized. It matches well with glass fiber, and
makes a powerful plastic material. The physical prop-
erty of FRP made by thermoplastic polyester is shown
in Table I.

Model of artificial neural-network

Theory of neural-network

Neural-network model (Fig. 2) is a modeling tech-
nique that finds out the hidden pattern in the data on
the field of neurophysiology to understand a brain
activity. This technique was started from an attempt to
explain nervous working, and initiated from an effort
for modeling its biological process by using of com-
puter, imitating the neural-network of human-being
brain and passing through the repeated learning pro-
cess from the data what oneself actually owns.

Especially, the model of neural-network is to find
out the related connection among vast scope of data
with very complicated structure or pattern, and is also
useful in predicting the future.

TABLE I
Property of FRP Containing Thermoplastic Polyester

Item Measured value Standard

Tensile strength (MPa) 135–145
Bending strength (MPa) 160–170 ASTM 695
Shear strength (MPa) 200–220 ASTM 790
Bending elastic Ratio (MPa) 9000–10,000 ASTM 790
Impact value (kg/cm/cm) 12.5–13.5
Volume resistivity 1.5 � 1016

Surface resistivity 5 � 1015

Withstand voltage (kV/mm) 30–35
Permittivity, 0–106 Hz 3.8–4.3
tan �, 60–106 Hz 0.003–0.016
Arc resistance (s) 90–120

Figure 1 Structure of FRP.

Figure 2 Schematic diagram of Neural Networks.
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TABLE II
Analysis on Preceded Research (Learning)

Reference Specimen

FRP Plate Concrete Ultimate
bond

strength
(kN)

Thickness
(mm)

Width
(mm)

Bond
length
(mm)

Elastic
modulus

(GPa)

Tensile
strength
(MPa)

Compressive
strength
(MPa)

Tensile
strength
(MPa)

Width
(mm)

Takeo et al.2 1–11 0.167 40 100 230 3481 36.56 2.86 100 8.75
1–12 0.167 40 100 230 3481 33.75 2.74 100 8.85
1–21 0.167 40 200 230 3481 36.56 2.86 100 9.30
1–22 0.167 40 200 230 3481 33.75 2.74 100 8.50
1–31 0.167 40 300 230 3481 36.56 2.86 100 9.30
1–32 0.167 40 300 230 3481 33.75 2.74 100 8.30
1–41 0.167 40 500 230 3481 36.56 2.86 100 8.05
1–42 0.167 40 500 230 3481 36.56 2.86 100 8.05
1–51 0.167 40 500 230 3481 33.50 2.73 100 8.45
1–52 0.167 40 500 230 3481 33.50 2.73 100 7.30
2–11 0.167 40 100 230 3481 31.63 2.64 100 8.75
2–12 0.167 40 100 230 3481 31.63 2.64 100 8.85
2–13 0.167 40 100 230 3481 33.13 2.71 100 7.75
2–14 0.167 40 100 230 3481 33.13 2.71 100 7.65
2–15 0.167 40 100 230 3481 30.88 2.61 100 9.00
2–21 0.334 40 100 230 3481 31.63 2.64 100 12.00
2–22 0.334 40 100 230 3481 31.63 2.64 100 10.80
2–31 0.501 40 100 230 3481 33.63 2.64 100 12.65
2–32 0.501 40 100 230 3481 33.63 2.64 100 14.36
2–41 0.165 40 100 373 2942 30.88 2.61 100 11.55
2–42 0.165 40 100 373 2942 31.88 2.61 100 11.00
2–51 0.167 40 100 230 3481 31.13 2.71 100 9.85
2–52 0.167 40 100 230 3481 31.13 2.71 100 9.50
2–61 0.167 40 100 230 3481 31.13 2.71 100 8.80
2–62 0.167 40 100 230 3481 30.13 2.71 100 9.25
2–71 0.167 40 100 230 3481 30.13 2.71 100 7.65
2–72 0.167 40 100 230 3481 33.13 2.71 100 6.80
2–81 0.167 40 100 230 3481 33.25 3.87 100 7.75
2–82 0.167 40 100 230 3481 33.25 3.87 100 8.05
2–91 0.167 40 100 230 3481 33.88 2.61 100 6.75
2–92 0.167 40 100 230 3481 33.88 2.61 100 6.80
2–101 0.111 40 100 230 3481 33.63 2.64 100 7.70
2–102 0.111 40 100 230 3481 63.13 2.71 100 6.95

Tan3 PG1–11 0.169 50 130 97 2777 37.60 2.90 100 7.78
PG1–12 0.169 50 130 97 2777 37.60 2.90 100 9.19
PG1–1W1 0.169 75 130 97 2777 37.60 2.90 100 10.11
PG1–1W2 0.169 75 130 97 2777 37.60 2.90 100 13.95
PG1–1L11 0.169 50 100 97 2777 37.60 2.90 100 6.87
PG1–1L12 0.169 50 100 97 2777 37.60 2.90 100 9.20
PG1–1L21 0.169 50 70 97 2777 37.60 2.90 100 6.46
PG1–1L22 0.169 50 70 97 2777 37.60 2.90 100 6.66
PG1–21 0.338 50 130 97 2777 37.60 2.90 100 10.49
PG1–22 0.338 50 130 97 3500 37.60 2.90 100 11.43
PC1–1C1 0.111 50 130 235 3500 37.60 2.90 100 7.97
PC1–1C2 0.111 50 130 235 3550 37.60 2.90 100 9.19

Zhao et al.4 NJ2 0.083 100 100 240 3550 20.50 2.08 150 11.00
NJ3 0.083 100 150 240 3550 20.50 2.08 150 11.25
NJ4 0.083 100 100 240 3550 36.70 2.87 150 12.50
NJ5 0.083 100 150 240 3550 36.70 2.87 150 12.25
NJ6 0.083 100 150 240 3481 36.70 2.87 150 12.75

Ren5 DLUT15–2G 0.507 20 150 83 3271 28.70 2.50 150 5.81
DLUT15–5G 0.507 50 150 83 3271 28.70 2.50 150 10.60
DLUT15–7G 0.507 80 150 83 3271 28.70 2.50 150 18.23
DLUT30–1G 0.507 20 100 83 3271 45.30 3.22 150 4.63
DLUT30–2G 0.507 20 150 83 3271 45.30 3.22 150 5.77
DLUT30–3G 0.507 50 60 83 3271 45.30 3.22 150 9.42
DLUT30–4G 0.507 50 100 83 3271 45.30 3.22 150 11.03
DLUT30–6G 0.507 50 150 83 3271 45.30 3.22 150 11.80
DLUT30–7G 0.507 80 100 83 3271 45.30 3.22 150 14.65
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Type of neural-network

Although there are various models, the most widely
used model for data-analysis is MLP (multi layer per-
ception) neural network. Besides, there are also RBF
(radial basis function) and EBF (elliptical basis func-
tion) though they are not chiefly used to MLP.

Back-propagation algorithm1

As for the method to optimize an objective function,
among the algorithms such as back-propagation, Lev-
enberg-Marquardt, Quasi-Newton, conjugate gradi-
ent, the simplest and extensively used back-propaga-
tion algorithm was applied to this study. The arrange-
ment on back-propagation algorithm by sequential
stage is as follows:

Step 1: Initial value of weight (Wki, Wji), bias (�j, �k),
learning rate (�), and momentum (�) value to be fixed.

Step 2: The generalized error (�k) at output layer to
be calculated.

Step 3: The weighting value between hidden layer
and output layer to be studied in accordance with the
following formula.

�Wki(k�1)���kyi��Wki(k)

where, k: iterative process (layering); �: learning rate;
�: momentum; yi: output value of hidden layer.

Step 4: The generalized error at hidden layer (�j) to
be calculated.

�j�yj(1�yj)��k�Wkj

Step 5: Weighting value between output layer and
hidden layer to be studied.

�W(k�1)���jxi��Wii(k)

Step 6: As a result of checking the error function, if it
lacks than the given objective value, the steps 1–5
must be repeated.

ANALYSIS ON PRECEDED RESEARCH
MATERIAL

With regard to the bond strength of FRP plate, the
data that those previous researchers had ever per-
formed were used as the learning material. The learn-
ing data to be utilized, which were arranged of the
previous research materials, are displayed at Table
II,2,3,4,5 and the data that will be used as the verifica-
tion materials are shown in Table III,6 respectively.
Likewise, to raise up its reliability of verification, it
was examined by the use of the formula of what the
existing researchers have ever proposed. The learning
range of the parameter that will be used for the learn-
ing is shown in Figure 3.

By analyzing the previous research material (learn-
ing material), the data can be schematized as shown in
Figures 4–7. Regarding the bond strength, according
to the compressive strength of concrete, it was noted

TABLE II
Continued

Reference Specimen

FRP Plate Concrete Ultimate
bond

strength
(kN)

Thickness
(mm)

Width
(mm)

Bond
length
(mm)

Elastic
modulus

(GPa)

Tensile
strength
(MPa)

Compressive
strength
(MPa)

Tensile
strength
(MPa)

Width
(mm)

DLUT30–8G 0.507 80 150 83 3271 45.30 3.22 150 16.44
DLUT50–1G 0.507 20 100 83 3271 55.50 3.60 150 5.99
DLUT50–2G 0.507 20 150 83 3271 55.50 3.60 150 5.90
DLUT50–4G 0.507 50 100 83 3271 55.50 3.60 150 9.84
DLUT50–5G 0.507 50 150 83 3271 55.50 3.60 150 12.28
DLUT50–6G 0.507 80 100 83 3271 55.50 3.60 150 14.02
DLUT50–7G 0.507 80 150 83 3271 55.50 3.60 150 16.71
DLUT15–2C 0.330 20 150 207 3890 28.70 2.50 150 5.48
DLUT15–5C 0.330 50 150 207 3890 28.70 2.50 150 10.02
DLUT15–7C 0.330 80 150 207 3890 28.70 2.50 150 19.27
DLUT30–1C 0.330 20 100 207 3890 45.30 3.22 150 5.54
DLUT30–2C 0.330 20 150 207 3890 45.30 3.22 150 4.61
DLUT30–4C 0.330 50 100 207 3890 45.30 3.22 150 11.08
DLUT30–5C 0.330 50 100 207 3890 45.30 3.22 150 16.10
DLUT30–6C 0.330 50 150 207 3890 45.30 3.22 150 21.71
DLUT30–7C 0.330 80 100 207 3890 45.30 3.22 150 22.64
DLUT50–1C 0.330 20 100 207 3890 55.50 3.60 150 5.78
DLUT50–5C 0.330 50 150 207 3890 55.50 3.60 150 16.72
DLUT50–6C 0.330 80 100 207 3890 55.50 3.60 150 16.24
DLUT50–7C 0.330 80 150 207 3890 55.50 3.60 150 22.80
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that the bond strength was almost linearly increased
as the increase of compressive strength. Also, the bond
strength was increased according to the intensity of
FRP plate, and no matter how long the adhesion
length may increase, bond strength was not increased;
no matter how long it may be, it could not absolutely
reach to the tensile strength of stiffener. However, the
more increase of the adhesion length, the more in-
crease of the ductility in the fracture process. It was
known that bond strength was increased even in a
little bit according to the depth ratio of FRP-concrete.

DEVELOPMENT OF NEURAL-NETWORK
MODEL

In this study, an optimal artificial neural-network model
has been developed by an application of the various
neural-network models and algorithms to the data of the
bond strength experiment by previous researchers. The
independent variables for development of the model
included the depth, width, bond length, modulus of
elasticity, tensile strength of FRP plate (data of previous
researches), and the compressive strength, tensile
strength and width of concrete were used; the bond
strength was used as a dependent variable. Also the
nonlinear function was used as an activation function,
the formation time for optimal network was carried out
five thousand times through several times of learning in
consideration of time-accuracy, and the optimized

model was derived among linear model, stochastic
model, and MLP model. As the result of analysis, the
conclusion as Table IV has been obtained. Among the
five types of model, MLP model was mostly accorded
well with the given data. Figure 8 is the flowchart that
schematized MLP model.

The learning on MLP model was regulated as total
30,000 epochs, and the error was adjusted to be con-
verged to the range of 0.001. Back-propagation algo-
rithm has been used as learning algorithm, which is
the most widely used, and Bayesian technique has
been applied as the generalization technique. As the
result of training, the model that is able to predict the
following FRP-concrete bond strength has been devel-
oped. Figure 9 is the graph in which the bond strength
presumed by MLP model and the test results of bond
strength are compared. Investigating the graph, some
errors between the actually measured bond strength
and the predicted value of bond strength that was
developed in this study were appeared more or less at
some parts; however it was appeared almost linearly
in view of the entire aspect.

VERIFICATION ON THE MODEL

To verify the MLP model that was developed in this
study, Table III was used as the verification material,
and its reliability on MLP model that was developed

TABLE III
Analysis on Preceded Research (Verification)

Reference Specimen

FRP Plate Concrete Ultimate
bond

strength
(kN)

Thickness
(mm)

Width
(mm)

Bond
length
(mm)

Elastic
modulus

(GPa)

Tensile
strength
(MPa)

Compressive
strength
(MPa)

Tensile
strength
(MPa)

Width
(mm)

Wu et al.6 D-CFS-150–30a 0.083 100 300 230 4200 58.85 3.71 100 12.20
D-CFS-150–30b 0.083 100 300 230 4200 73.85 4.21 100 11.80
D-CFS-150–30c 0.083 100 300 230 4200 73.85 4.21 100 12.25
D-CFS-300–30a 0.167 100 300 230 4200 73.85 4.21 100 18.90
D-CFS-300–30b 0.167 100 300 230 4200 73.85 4.21 100 16.95
D-CFS-300–30c 0.167 100 300 230 4200 73.85 4.21 100 16.65
D-CFS-600–30a 0.333 100 300 230 4200 73.85 4.21 100 25.65
D-CFS-600–30b 0.333 100 300 230 4200 73.85 4.21 100 25.35
D-CFS-600–30c 0.333 100 300 230 4200 73.85 4.21 100 27.25
D-CFM-300–30a 0.167 100 300 390 4400 73.85 4.21 100 19.50
D-CFM-300–30b 0.167 100 300 390 4400 73.85 4.21 100 19.50
D-AR-280–30a 1.000 100 300 24 4400 73.85 4.21 100 12.75
D-AR-280–30b 1.000 100 300 24 4400 73.85 4.21 100 12.85
D-AR-280–30c 1.000 100 300 24 4400 73.85 4.21 100 11.90
S-CFS-400–25a 0.222 40 250 230 4200 73.85 4.21 100 15.40
S-CFS-400–25b 0.222 40 250 230 4200 73.85 4.21 100 13.90
S-CFS-400–25c 0.222 40 250 230 4200 73.85 4.21 100 13.00
S-CFM-300–25a 0.167 40 250 390 4400 73.85 4.21 100 12.00
S-CFM-300–25b 0.167 40 250 390 4400 73.85 4.21 100 11.90
S-CFM-900–25a 0.500 40 250 390 4400 73.85 4.21 100 25.90
S-CFM-900–25b 0.500 40 250 390 4400 73.85 4.21 100 23.40
S-CFM-900–25c 0.500 40 250 390 4400 73.85 4.21 100 23.70
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in this study was proved through the comparison of
the result value (Table V)which was analytically re-
searched by the suggested formulas provided by Sa-
to’s model and Yang’s model.7,8

As the result of comparison with the bond strength
predicted value that presumed to the MLP model (Fig.
10), which developed in this study, and the test result
value of Wu (2001), the correlative coefficient value of
the mentioned two values was analyzed as high as R2

� 0.815. The correlative coefficient of bond strength
value calculated by Sato’s (Fig. 11) and Yang’s (Fig. 12)
suggested formulas with the test result value was
analyzed as R2 � 0.741 and R2 � 0.126, respectively.

SENSITIVITY ANALYSIS

As the result of sensitivity analysis (Table VI)on the
variables, which are affected by bond strength, it
could be confirmed that the width ratio of FRP-con-

Figure 3 Learning range of parameter. (a) Range of Com-
pressive strength, (b) range of plate stiffness, (c) range of
bond length, (d) range of FRP-to-concrete width ratio.

Figure 4 Relation between bond strength and compressive
strength of concrete.

Figure 5 Relation between bond strength and stiffness of
FRP.
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Figure 6 Relation between bond strength and bond length.

Figure 7 Relation between bond strength and FRP-to-con-
crete width ratio.

Figure 8 Flowchart for Schematized MLP Model.

Figure 9 Comparison of Predicted bond strength and test
results.

Figure 10 Comparison of bond strength between test re-
sults and predicted value (MLP model).

Figure 11 Comparison of bond strength between test re-
sults and predicted value (Sato’s model).
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crete is acting as the largest variable, and was ana-
lyzed that the elastic modulus is subsequently sensi-
tive to bond strength, and confirmed that the influence
of bond length to bond strength is the lowest one.

CONCLUSIONS

In this study, previous research materials have been
investigated and analyzed for the development of the
bond strength model of FRP sheet-concrete, and the
optimal neural-network model was developed on the
basis of the previous research materials as variables,
and its reliability has been verified by comparison
with other experimental results. Based on the compar-
ison it was concluded as follows:

1. To develop the optimal neural-network model,
as the result of application of various models and
learning algorithm, the most suitable model was

TABLE IV
Model Summary of Report

Index Profile
Train
perf.

Select
perf.

Test
perf.

Train
error Select error

Test
error

Hidden
(1)

Hidden
(2)

1 GRNN 1:1–48-2–1:1 0.99148 0.983594 0.992847 0.202869 0.182304 0.308208 48 2
2 Linear 4:4–1:1 0.767177 0.739879 0.596476 0.125541 0.108062 0.161250 0 0
3 Linear 5:5–1:1 0.767014 0.738190 0.595605 0.125514 0.107809 0.160758 0 0
4 MLP 7:7–11-10–1:1 0.350432 0.374932 0.607727 0.045914 0.043801 0.121631 11 10
5 MLP 8:8–8-1:1 0.302571 0.365374 0.590860 0.039620 0.042619 0.115318 8 0

TABLE V
Comparison of Results

Reference Specimen
Bond strength,

Pu (kN)
MLP

model
Expt/MLP

model
Sato’s
model

Expt/Sato’s
model

Yang’s
model

Expt/Yang’s
model

Wu et al.6 D-CFS-150–30a 12.20 12.89 0.946 2.18 5.596 9.61 1.269
D-CFS-150–30b 11.80 13.29 0.888 2.29 5.153 10.89 1.083
D-CFS-150–30c 12.25 19.43 0.630 2.29 5.349 10.89 1.125
D-CFS-300–30a 18.90 24.49 0.772 6.08 3.109 11.03 1.713
D-CFS-300–30b 16.95 24.49 0.692 6.08 2.788 11.03 1.537
D-CFS-300–30c 16.65 24.49 0.679 6.08 2.738 11.03 1.509
D-CFS-600–30a 25.65 33.43 0.767 15.99 1.604 11.24 2.282
D-CFS-600–30b 25.35 33.43 0.758 15.99 1.585 11.24 2.255
D-CFS-600–30c 27.25 33.43 0.815 15.99 1.704 11.24 2.424
D-CFM-300–30a 19.50 22.27 0.876 12.74 1.531 11.19 1.743
D-CFM-300–30b 19.50 22.27 0.876 12.74 1.531 11.19 1.743
D-AR-280–30a 12.75 15.18 0.839 3.13 4.073 10.93 1.166
D-AR-280–30b 12.85 15.18 0.847 3.13 4.063 10.93 1.176
D-AR-280–30c 11.90 15.18 0.784 3.13 3.802 10.93 1.088
S-CFS-400–25a 15.40 10.38 1.477 7.59 2.021 4.44 3.454
S-CFS-400–25b 13.90 10.38 1.339 7.59 1.831 4.44 3.131
S-CFS-400–25c 13.00 10.38 1.252 7.59 1.713 4.44 2.927
S-CFM-300–25a 12.00 9.00 1.333 5.73 2.094 4.42 2.714
S-CFM-300–25b 11.90 9.00 1.322 5.73 2.077 4.42 2.692
S-CFM-900–25a 25.90 26.79 0.967 26.58 0.974 4.58 5.655
S-CFM-900–25b 23.40 26.79 0.874 26.58 0.880 4.58 5.109
S-CFM-900–25c 23.70 26.79 0.884 26.58 0.891 4.58 5.175

�Sato’s model� �u � 2.68 f	c
0.2tfEf � 10�5; Le � 1.89(Eftf)

0.4; Pu � (bf � 2�b)Le�u; where, �b � 3.7 mm.
�Yang’s model� Pu � (0.5 � 0.08√(Eftf/100ft) � bfLe �u; �u � 0.5 f1; Le � 100 mm.

Figure 12 Comparison of bond strength between test re-
sults and predicted value (Yang’s model).
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assumed as MLP model, which is consists of one
hidden layer and eight hidden nodes.

2. Having with the presumed MLP model, it was
trained to be converged within the range of
learning error as 0.001, and the optimal neural-
network model was developed by the application
of back-propagation algorithm to learning algo-
rithm.

3. As the result of comparison of the bond strength
predicted by MLP model and measured at the
receded study, it could be confirmed that both
are almost accord.

4. To verify the confidence of MLP model, as the
result of comparison of Sato’s model and Yang’s
model, with bond strength, comparison of the
predicted bond strength by MLP model with ex-
perimental result value of Wu was performed.
The correlative coefficient of the two values have
been analyzed as high as R2 � 0.815.

5. As the result of sensibility analysis about the
provided variable, the most influencing factor to
bond strength was revealed to be width and it

was confirmed that the influence of bonding
length to bond strength is the lowest one.
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TABLE VI
Result of less Sensitivity Analysis

Thickness Width
Bond
length

Elastic
modulus

Tensile
strength

Compressive
strength

Tensile
strength Width

Ratio 1.215 1.720 0.984 1.344 1.020 1.024 1.049 1.318
Rank 4 1 8 2 7 6 5 3
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